UNITE DE VALORISATION ENERGETIQUE DE LASSE

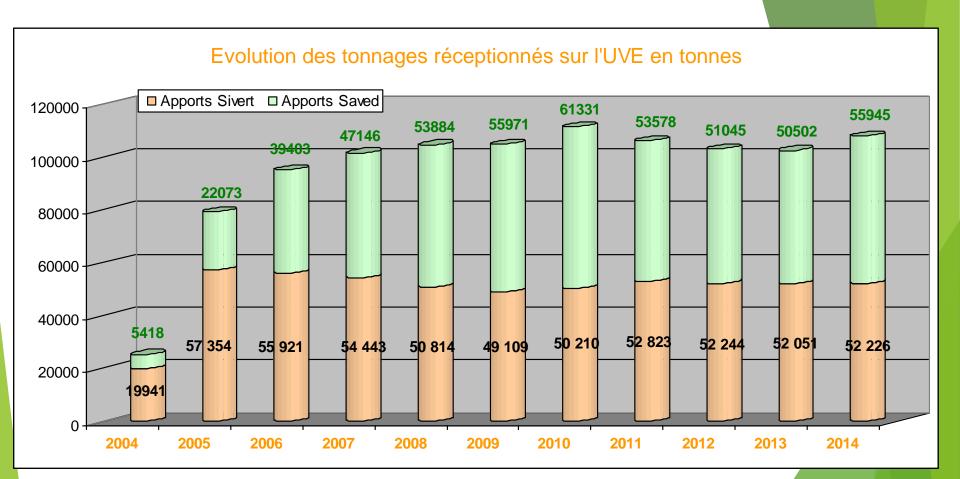
CSS 24 JUIN 2015

PLAN DE L'EXPOSE:

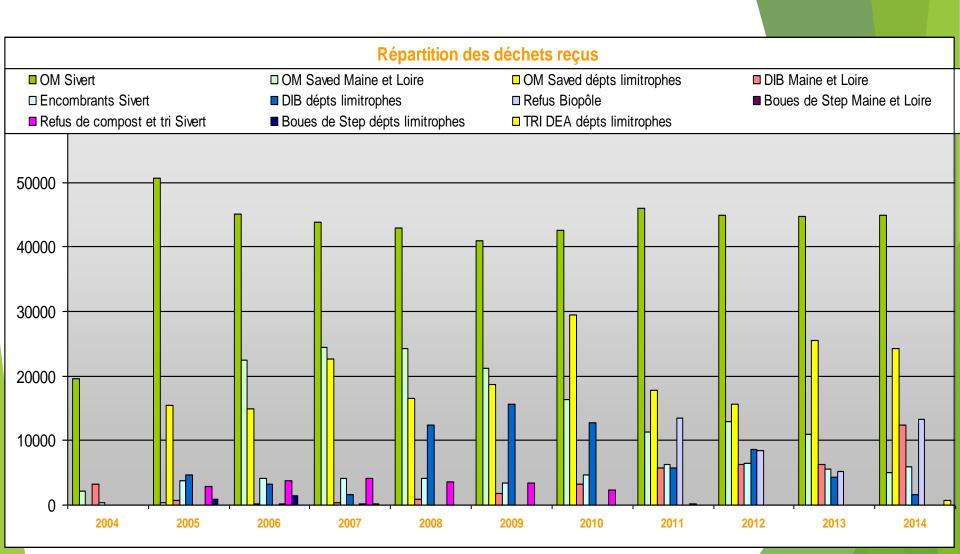
•Fonctionnement de l'UVE et auto-contrôles

• Les Plans de suivi

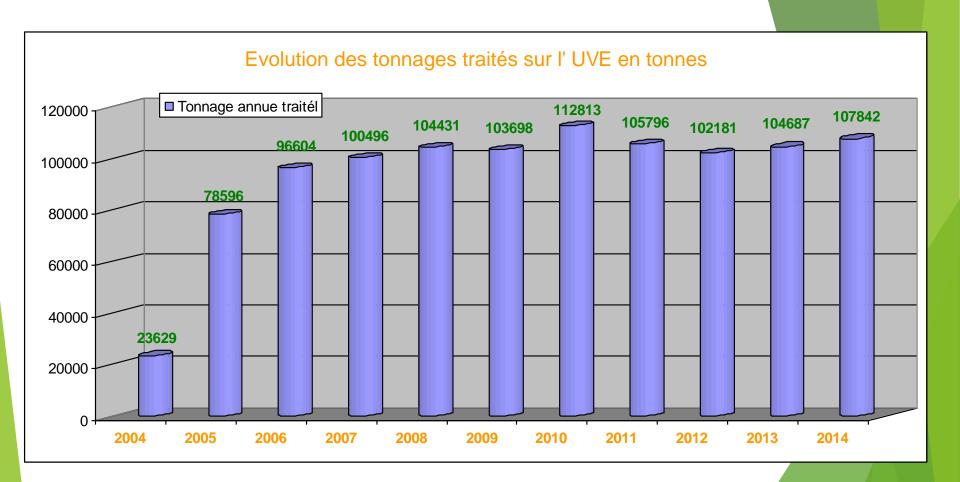
Conclusions


Fonctionnement de l'UVE et auto-contrôles

Evolution des tonnages réceptionnés sur L'UVE en tonnes



Répartition par types de déchets reçus



Evolution des tonnages traités sur L'UVE en tonnes

Autres chiffres: 2013 - 2014

2013 - 2014

Heures de fonctionnement : 7 574 h -- 7871 h

• Tonnage horaire moyen traité: 13,82 t/h -- 13,70 t/h

Tonnage de balles de déchets réalisées : 2241 t -- 1304 t

Métaux ferreux valorisés : 2237 t -- 2361 t

Métaux non ferreux valorisés : 106 t -- 170 t

Mâchefers « V » valorisés : 16577 t -- 18197 t

• MWh électriques produits : 59719 Mwh – 67430 Mwh

<u>Faits marquants 2013</u>

- Février arrêt de 6 jours pour nettoyage chaudière
- Juin : Arrêt technique nettoyage chaudière et inspection 7 jours
- Juin Juillet : plusieurs petits arrêts problème électrique ventilateur primaire
- Août : arrêt sur fuite chaudière 2.5 jours
- Septembre : arrêt technique 28 jours
- Inspection et requalification, Décennal chaudière
- Octobre : arrêt rupture joint vapeur HP, 3 jours, défaut de montage joint sous traitant.
- Octobre novembre : 15 jours arrêt turbo alternateur, fuite soupape admission
- Décembre : arrêt broyeur encombrants panne hydraulique
- Visite d'inspection de la DREAL : 19/09/2013
- Certification 9001, 18001 et 14001 Audit de suivi en juin Avis favorable
- Départ incendie local encombrants ayant entrainé l'intervention d'une cinquantaine de pompiers, dégâts mineurs au vue de l'ampleur. La cause identifiée est la présence d'un liquide inflammable dans les encombrants.
 - Nouvelle communication auprès des collectivités.
 - Etude de système de protection incendie

Faits marquants 2014

- Arrêt suite bourrage réacteur du 14/01/14 au 17/01/14.
- Arrêt pour nettoyage et travaux chaudière du 25/01/14 au 06/02/14.
- Arrêt suite fuite joint réchauffeur d'eau alimentaire du 26/02/14 au 28/02/14.
- Arrêt pour nettoyage chaudière du 01/06/14 au 05/06/14.
- Arrêt technique du 24/08/14 au 07/09/14.
- Arrêt suite blocage alimentateur de déchets le 17/12/14.

•

<u>Faits marquants 2014</u>

- Visite d'inspection de la DREAL : le 12 décembre 2014.
- Renouvellement de la triple certification en juin 2014 (ISO 9001, ISO 18001, ISO 14001).
- Une détection radioactive sur déchets Val Touraine Anjou le 02/07/14.
 Déchet isolé par l'entreprise Radioprotection puis évacuation du déchet par l'organisme Andra.
- Augmentation des moyennes de CO entre le 27/07/14 et le 24/08/14 suite à un bouchage partiel du four par un clinker.
- Arrêt usine sur défaut automate chaine de défaut chaudière le 05/10/14.
- Appel des pompiers dans la nuit du 20/11/14 au 21/11/14 suite à un important dégagement de fumée dans les déchets, pas de flamme, et lors de l'arrivée des pompiers le phénomène avait était traité avec nos moyens de lutte incendie interne.
- Une détection radioactive sur déchet Val Touraine Anjou le 26/11/14.
 Déchet isolé par l'entreprise Radioprotection. Le déchet a été détruit après le 2 janvier 2015 suite à la décroissance de celui-ci,
- Une détection radioactive sur déchet OM Saumur le 28/11/14. Déchet isolé par l'entreprise Radioprotection. Le déchet a été détruit après le 2 janvier 2015 suite à la décroissance de celui-ci.

Contrôle continu des émissions 2013

Concentration des polluants (en mg/Nm3 à 11% d'02 sur gaz sec)

RAPPORT ANNUEL

ANNEE: 2013

	ANNEL: 2013																			
Jour	COI	M B UST	ION	FUM	EES		CONC (en mg/)	Dépas semen		MASS	ES DE P	OLLUAN (en Kg)	TSREJ	ETEES	
	T2s (°C)	O2 Chau d. (%vol)	Débit vape ur (T/h)	O2 (%vol) (1)	H2O (%vol)	HCI (2)	CO (2)	SO2 (2)	NOx (2)	C O T	N H 3	Pous- sières (2)	t d'au moins 1 VLE (3)	нсі	СО	SO2	NOx	СОТ	NH3	Pous- sières
V.L.E.1/2		,	, ,	` '		60	10 0	200	400	20	4	30								
Janvier	1140	6.6	39.3	10.1	18.8	7.0	6.1	14.2	68.2	0.3	8.0	1.4		418	3	853	4070	18	483	85
Février	1131	6.7	39.5	10.0	18.2	6.9	4.8	18.3	68.2	0.3	7.5	1.5		294	1	781	2907	12	320	65
Mars	1130	6.6	41.9	10.1	17.4	6.9	4.3	19.0	68.3	0.3	11.6	1.5		426	2	1167	4191	21	710	94
Avril	1125	6.7	42.1	10.0	17.6	7.1	4.2	15.8	68.4	0.3	11.1	1.6		419	2	931	4024	17	657	96
Mai	1111	7.1	42.1	9.7	18.5	7.2	4.8	15.7	68.4	0.3	11.0	1.6		438	2	949	4148	17	669	99
Juin	1117	6.8	40.9	9.9	19.4	7.4	5.1	11.8	68.2	0.3	11.1	1.6	Х	320	2	514	2960	14	487	71
Juillet	1114	6.9	41.3	9.9	19.1	7.3	6.5	13.6	68.7	0.3	10.1	0.8		417	3	774	3928	18	580	49
Août	1113	6.9	41.5	9.9	18.4	7.4	6.5	10.9	68.8	0.3	7.7	0.5	Х	414	3	608	3839	16	432	29
Septembr	1100	6.8	39.7	10.0	19.0	7.1	8.8	6.7	66.0	0.5	4.3	2.4		15	0	14	139	1	9	5
Octobre	1135	6.5	40.6	9.7	19.2	7.4	5.2	18.0	68.4	0.4	0.6	0.2		409	2	1005	3808	22	33	10
Novembre	1137	6.7	39.8	9.6	19.4	5.5	5.6	30.4	68.8	0.3	1.0	0.5		308	2	1716	3872	16	54	27
Décembre	1139	6.5	38.1	9.8	19.3	7.2	5.1	19.7	68.7	0.2	1.4	0.5		435	2	1199	4173	13	86	30
Moye nnes	1127	6.7	40.6	9.9	18.6	7.0	5.3	17.1	68.5	0.3	7.3	1.1								
V.L.E Jour						9	45	40	80	9		5								
ps de dé	passe	ment cı	ımulé V	/LE 1/21	h(hh:mn	0:00	0:00	0:00	0:00	1:00		0:00		4313	23	10510	42059	186	4520	660
Temps	Temps réglementaire de dépassement des VLE 1/2h et 10mn (hh:mm) pour l'année											1:00								

Contrôle continu des émissions 2014

Concentration des polluants (en mg/Nm3 à 11% d'02 sur gaz sec)

RAPPORT ANNUEL

ANNE	Ε	2014

Jour	COI	M B UST	ION	FUM	EES		CONC (en mg/					\	Dépas semen	Jour		FUM	EES		MASSES DE POLLUANTS REJETEES (en Kg)						
	T2s	O2 Chau d.	Débit vape ur	O2 (%vol)	H2O (%vol)	нсі	СО	SO2	NOx	сот	NH3	Pous- sières	t d'au moins 1VLE		Temp.	Pres- sion	Débit brut	Débit corrigé	нсі	со	SO2	NOx	сот	NH3	Pous- sières
	(℃)	(%vol)	(T/h)	(1)		(2)	(2)	(2)	(2)	(2)	(2)	(2)	(3)		(℃)	(mbara)	Nm3/h	Nm3/h							
V.L.E.1/	2h					60	100	200	400	20	4	30					(1)	(2)							
Janvier	1157	6.2	36.2	9.7	19.8	7.4	5.3	13.6	68.0	0.3	1.2	0.6		Janvier	174	997	88175	78988	305	29	556	2806	11	48	25
Février	1148	6.3	40.5	9.4	19.3	7.3	5.5	20.2	69.4	0.3	0.4	0.7		Février	176	993	90361	83224	286	215	797	2731	10	17	27
Mars	1133	6.5	42.4	9.5	18.0	7.1	7.9	24.1	68.6	0.3	0.5	0.8		Mars	168	1003	85824	81266	427	482	1453	4143	16	31	46
Avril	1130	6.5	42.1	9.5	18.6	7.2	9.4	21.5	68.5	0.2	0.8	0.7		Avril	168	1002	85395	79784	415	541	1228	3930	14	46	40
Mai	1145	6.3	42.3	9.3	19.5	6.9	7.0	22.0	69.1	0.3	1.4	0.6		Mai	169	1003	89586	84015	429	439	1370	4311	16	87	38
Juin	1135	6.5	42.2	9.4	18.6	5.2	7.0	32.6	68.6	0.3	1.0	0.8		Juin	172	1005	86801	81484	256	347	1616	3400	12	50	39
Juillet	1145	6.2	41.8	9.3	19.4	6.9	7.5	21.7	68.7	0.3	0.7	0.7		Juillet	175	1002	88573	82781	422	469	1335	4224	15	43	43
Août	1132	6.4	41.6	9.4	19.5	7.3	19.6	19.0	67.9	0.3	1.1	0.8		Août	171	1001	91053	84442	343	917	900	3207	13	54	38
Septembr	1147	6.1	41.9	9.7	18.5	7.0	6.2	21.1	67.6	0.3	1.4	0.1		Septembre	167	1003	88578	81884	324	289	982	3150	13	65	2
Octobre	1153	6.2	41.8	9.6	19.2	6.8	5.1	26.0	67.5	0.2	1.9	0.2		Octobre	169	1002	88577	81282	407	306	1561	4046	14	113	10
Novembr	1128	5.9	41.9	9.4	19.2	6.7	6.8	25.9	66.3	0.4	1.2	0.4		Novembre	170	994	89294	82862	400	401	1546	3955	22	70	22
Décembre	1148	6.4	40.8	9.4	19.3	6.9	7.3	23.1	66.4	0.4	1.2	1.0		Décembre	171	1009	85695	79935	401	421	1361	3860	22	69	56
Moye nnes	1141	6.3	41.3	9.5	19.1	6.9	7.8	22.8	68.0	0.3	1.1	0.6		Moyen nes	171	1001	88039	81812							
		V.L.E	Jour			9	45	40	80	9		5													
ps de de	passe	ment cı	ımulé \	/LE 1/2	h(hh:n	0:00	0:00	0:00	0:00	0:00		0:00		Totaux					4415	4858	14705	43765	178	694	387
Temps	Temps réglementaire de dépassement des VLE 1/2h et 10 mn (hh:mm) pour l'année								0:00																

Résultat des contrôles atmosphériques 2013 - 2014

	Suivi des rapports de contrôle de rejets atmosphériques									
Seuil arrêté préfectoral du 26/10/04	Moyenne 3 mesures à 11% oxygène	juin-13	nov-13	mai-14	Dec-14					
	Vitesse	25.96m/s	25.20m/s	25.00m/s	25.00m/s					
	Débit humide	73300.00Nm3/h	74063.00Nm3/h	69286.00Nm3/h	70706.00Nm3/h					
	Oxygène (O²)	9.90%	9.45%	9.10%	8.80%					
5.00mg/Nm3	Poussières	0.40mg/Nm3	1.00mg/Nm3	0.80mg/Nm3	2.00mg/Nm3					
45.00mg/Nm3	Monoxyde de carbone (CO)	4.00mg/Nm3	5.00mg/Nm3	5.60mg/Nm3	3.30mg/Nm3					
	Oxyde de soufre (SO ²)	9.90mg/Nm3	3.70mg/Nm3	20.60mg/Nm3	5.30mg/Nm3					
80.00mg/Nm3	Nox en dioxyde d'azote (NO2)	59.00mg/Nm3	71.90mg/Nm3	61.50mg/Nm3	72.00mg/Nm3					
9.00mg/Nm3	Composés organiques volatils totaux (COVt en carbone)	1.50mg/Nm3	0.60mg/Nm3	0.60mg/Nm3	0.60mg/Nm3					
9.00mg/Nm3	Acide chlorhydrique (HCL)	2.90mg/Nm3	6.60mg/Nm3	6.40mg/Nm3	6.80mg/Nm3					
0.50mg/Nm3	Fluorure d'hydrogène (HF)	0.01mg/Nm3	0.06mg/Nm3	0.03mg/Nm3	0.03mg/Nm3					
0,03 mg/Nm3	Mercure gazeux (Hg)	0.0010mg/Nm3	0.0005mg/Nm3	0.0009mg/Nm3	0.0003mg/Nm3					
0,25 mg/Nm3	Métaux lourds gazeux	0.013mg/Nm3	0.017mg/Nm3	0.0269mg/Nm3	0.0218mg/Nm3					
0,08 ng/Nm3	Dioxines et furanes (PCDD/PCDF)	0.001ng/Nm3	0.001ng/Nm3	0.0035ng/Nm3	0.0130ng/Nm3					
0,03 mg/Nm3	Cadmium et Thallium (Cd + Ti)	0.003mg/Nm3	0.003mg/Nm3	0.0028mg/Nm3	0.0025mg/Nm3					
20 mg/Nm3	NH3	8.100mg/Nm3	0.120mg/Nm3	5.800mg/Nm3	0.400mg/Nm3					
	Sélenium	2.2µg/m3	2.5000µg/Nm3	2.7000µg/Nm3	1.9000µg/Nm3					
	Teneur en HAP			0.00005mg/Nm3	0.00080mg/Nm3					
	Teneur en Benzène			0.0250mg/Nm3	0.0200mg/Nm3					
	Flux journalier									
10.00 Kg/j	Poussières	0.768Kg/j	2.040Kg/j	1.680Kg/j	3.840Kg/					
86.00 Kg/j	Monoxyde de carbone (CO)	7.680Kg/j	10.320Kg/j	12.000Kg/j	6.720Kg/					
77.00 Kg/j	Oxyde de soufre (SO ²)	19.440Kg/j	7.680Kg/j	40.800Kg/j	10.800Kg/					
154.00 Kg/j	Nox en dioxyde d'azote (NO2)	115.680Kg/j	147.600Kg/j	122.400Kg/j	148.080Kg/					
17.00 Kg/j	Composés organiques volatils totaux (COVt en carbone)	3.120Kg/j	1.176Kg/j	1.200Kg/j	1.152Kg/					
17.00 Kg/j	Acide chlorhydrique (HCL)	5.520Kg/j	13.680Kg/j	12.480Kg/j	13.920Kg/					
1.00 Kg/j	Fluorure d'hydrogène (HF)	0.048Kg/j	0.120Kg/j	0.072Kg/j	0.072Kg/					
0.06 Kg/j	Mercure gazeux (Hg)	0.00600Kg/j	0.00000Kg/j	Ű,	0.00127Kg/					
0.50 Kg/j	Métaux lourds gazeux	0.024Kg/j	0.002Kg/j	0.0552Kg/j	0.0432Kg/					
0.15 Kg/j	Dioxines et furanes (PCDD/PCDF)	0.000168000Kg/j	0.000002100Kg/j	0.00000007Kg/j	0.000000026Kg/					
0.06 Kg/j	Cadmium et Thallium (Cd + Ti)	0.005Kg/j	0.007Kg/j	0.00576Kg/j	0.00482Kg/					
48.00 Kg/j	NH3	15.840Kg/j	0.240Kg/j	ű,	0.960Kg/					

Fonctionnement traitement des fumées

- Les moyennes mensuelles et annuelles sont inférieures à chacune des valeurs autorisées
- Compteur 60h pour 2013 : 1h et 2014 : 0h
- 0 journée invalide pour 10 autorisées
- 0 Journée où une VLE jour en concentration et en flux massique a été dépassé

Performance Energétique (Pe) et Efficacité Energétique (R1)

LASSE - Performance Energétique (Pe) et Efficacité Energétique (R1)

Rappel de la formule de détermination de la Performance Energétique (Pe) - arrêté 03 août 2010 :

 $Pe = \frac{\left[\left(2.6 \times Ee.p + 1.1 \times Eth.p\right) - \left(2.6 \times Ee.a + 1.1Eth.a + Ec.a\right)\right]}{2.3 \times T}$

	Pe	R1	PCI	
2013	63.7%	57.1%	2 269	kCal/kg
2014	69.3%	61.5%	2 293	kCal/kg

où :	se référer à l'arrêté du 03 août 2010 pour le libellé exact
Ee.p	Energie électrique produite (MWh)
Eth.p	Energie thermique produite (MWh)
Eth.a	Energie thermique achetée (MWh)
Ec.a	Gaz, fuel, etc. acheté pour le fonctionnement de l'installation global four + TF (MWh)
Ee.a	Electricité achetée pour le fonctionnement de l'installation globale four + TF (MWh)
2.3	Facteur intégrant un PCI générique des déchets de 2044 kcal/kg
Т	Tonnage de déchets réceptionnés (t)

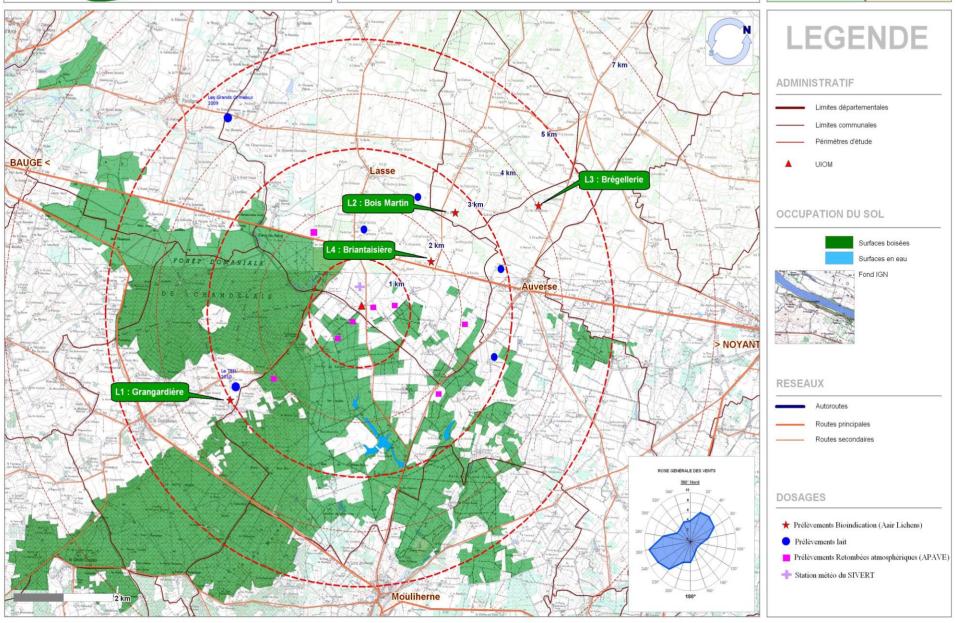
	Mois	Ee.p	Eth.p Pe	Eth.p R1	Ee.a	Ec.a Fuel Pe	Ec.a Fuel R1	Ec.a Gaz Pe	Ec.a Gaz R1	Т	Pe	R1	PCI
0	janv-13	6 087	_	-	16	15	7	- 1	-	9 736	70.4%	66.4%	2 163
0	févr-13	4 188		_	121	275	137	-		8 241	54.3%	50.3%	2 191
0	mars-13	6 468	-	_	0	4	2		-	8 595	85.1%	75.9%	2 286
o	avr-13	6 243	-	-	5	7	3	-	-	9 728	72.5%	63.7%	2 319
o	mai-13	6 425	-	_	2	- 0	- 0	-	-	9 337	77.8%	66.2%	2 397
o	juin-13	4 199	-	-	133	293	146		-	7 400	60.4%	54.7%	2 235
О	juil-13	5 492	-	-	77	126	63	-	-	9 896	61.3%	53.7%	2 323
О	août-13	4 952	-	-	181	135	67	-	-	7 870	67.8%	57.2%	2 411
О	sept-13	212		-	303	251	126	-	-	4 455	-4.8%	-4.1%	2 339
0	oct-13	4 371	-	-	303	302	151	-	-	8 846	50.5%	46.4%	2 205
0	nov-13	4 629	-	-	247	103	51	-	-	8 850	55.5%	52.9%	2 132
0	déc-13	6 454	_	-	5	3	2	-	-	9 596	76.0%	69.6%	2 225
0	janv-14	4 257	-	-	169	166	83	- 1	-	8 644	52.6%	49.5%	2 160
0	févr-14	4 102	-	-	128	307	154	-	-	6 416	67.9%	61.7%	2 225
0	mars-14	6 676	-	-	4	107	53	-	-	8 925	84.0%	71.4%	2 394
0	avr-14	6 391	-	-	5	-	-	-	-	10 280	70.2%	62.2%	2 301
0	mai-14	6 512	-	-	0	3	2	-	-	9 763	75.4%	66.8%	2 302
О	juin-14	5 176	-	-	76	146	73	-	-	8 528	66.9%	58.1%	2 339
0	juil-14	6 136	_	-	8	- 10	- 5	-	-	10 399	66.7%	59.7%	2 279
0	août-14	4 672	-	-	95	6	3	-	-	8 703	59.4%	53.4%	2 267
o	sept-14	4 722	-	-	128	281	140	-	-	8 459	59.9%	52.2%	2 326
О	oct-14	6 390	_	-	13	33	17	-	-	9 423	76.4%	67.0%	2 324
o	nov-14	6 310	-	-	11	11	6	-	-	9 746	73.0%	64.7%	2 302
0	déc-14	6 085	_	-	28	117	59	-	-	8 887	76.5%	67.7%	2 297

LES PLANS DE SUIVI DE L'UVE DE LASSE

Le plan de surveillance mis en place :

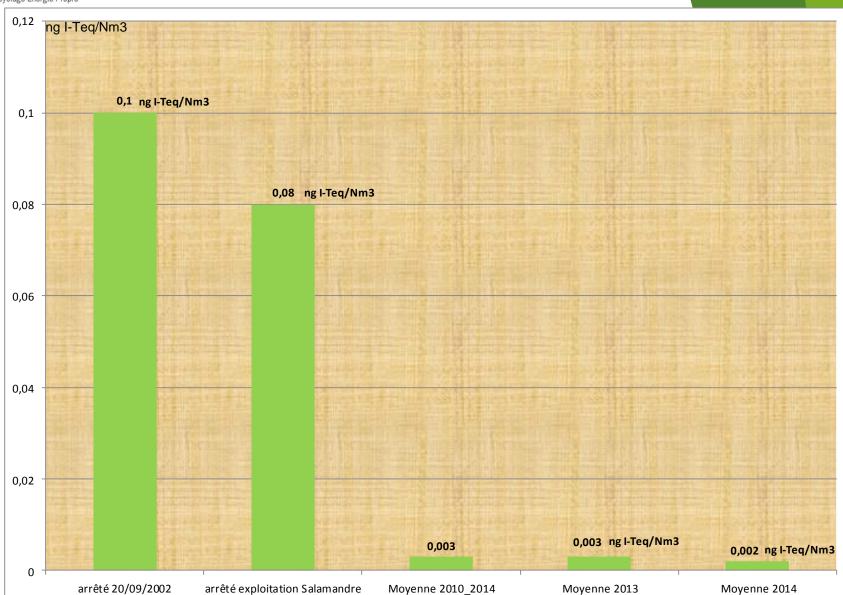
AVOIR les GARANTIES de bon FONCTIONNEMENT

- In situ:
- ➤ **Prélèvement en continu**, analyse en semi-continu des Dioxines et Furannes
- · A proximité: 3 km
 - ➤ 16 Jauges OWEN sur 8 points,
 - > Station météorologique
 - > Laboratoire accrédité
 - ➤ Interprétation par un bureau d'étude indépendant
 - > Etat des lieux (été et hiver)
 - > Prélèvement tous les deux mois
 - ➤ Analyse des Dioxines et Furannes
- A distance: 10 km
 - ➤ Bio-indication (Aair-lichen)
 - ➤ Cartographie de la qualité de l'air
 - ➤ 4 points de prélèvements (analyse des dioxines et furannes et métaux lourds)
- Etat des lieux : sur le sol (13 points de prélèvements dans un rayon de 5 km autour de l'U.V.E) et le lait (6 exploitations aux abords)

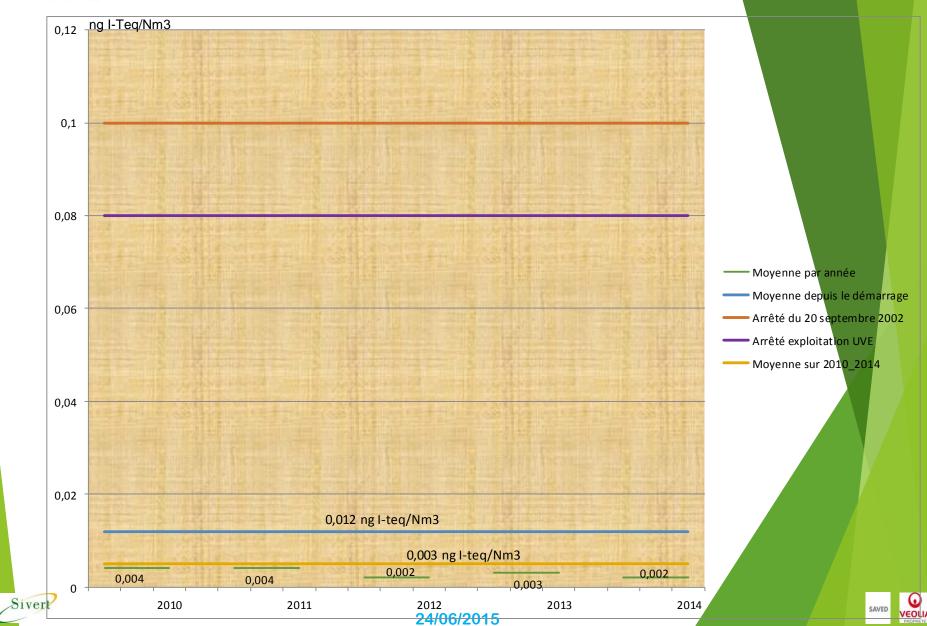


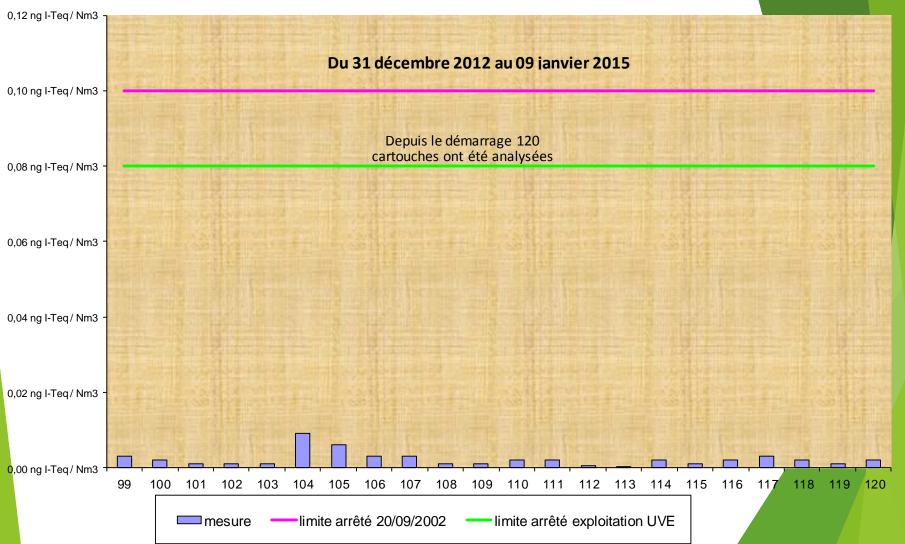
S.I.V.E.R.T de l'Est-Anjou Syndicat mixte Intercommunal de Valorisation Et de Recyclage Thermique des déchets de l'Est-Anjou

Date	Valeur Arrêté d'exploitation	Valeur U.V.E.
31/12/2012 au 16/01/2014	0,08 ng I-Teq/Nm3	0,003 ng I-Teq/Nm3
16/01/2014 au 09/01/2015	0,08 ng I-Teq/Nm3	0,002 ng I-Teq/Nm3


Depuis le démarrage de l'UVE (24/10/04 au 05/05/15)

0.012 ng I-Teq/Nm3





Pour l'année 2013 l'UVE a émis 1.84 mg de dioxines.

Pour l'année 2014 l'UVE a émis 1.29 mg de dioxines.

Ce chiffre est à comparer avec la quantité maximale admissible d'émission pour une limite de 0.1 ng l-Teq/Nm3 qui est de 62 mg par an

Dioxines

2013

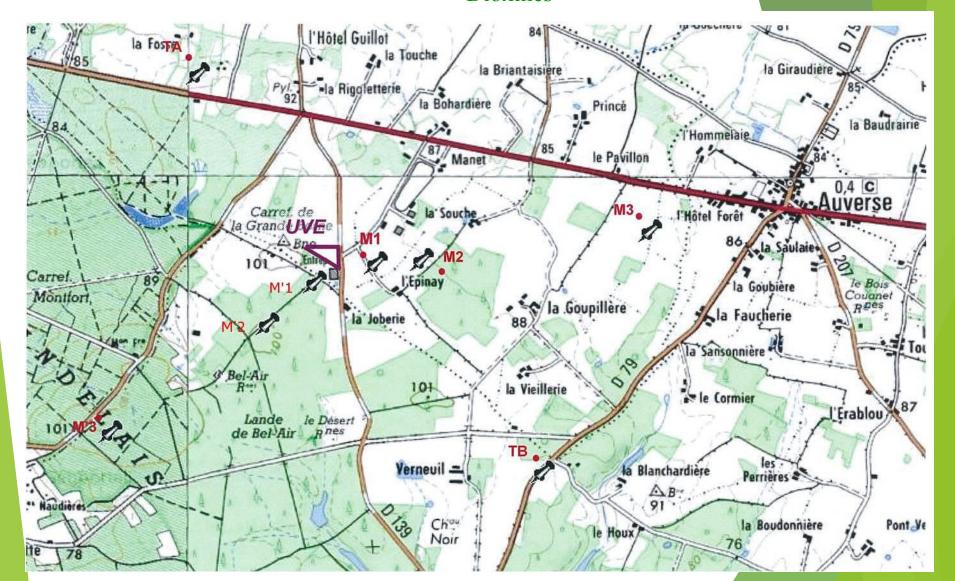
Sivert		Point 0 hiver Point 0 é		P 50 14 décembre 2012 au 18 février 2013	P 51 18 fevrier 2013 au 25 avril 2013	P 52 25 avril 2013 au 27 juin 2013	P53 27 Juin au 2 septembre 2013	P54 02 septembre au 4 Novembre 2013	P55 4 Novembre 2013 au 6 janvier 2014
		en pg I-TEQ/m².j		en pg I-TEQ/m ²	² .j				
Blanc de site	I-Teq avec LQ			4,76	5,21	4,98	3,11	3,3	3,3
bianc de site	I-Teq sans LQ	0,73	0,09	ND	0,28	ND	ND	ND	ND
TA	I-Teq avec LQ			4,78	4,81	5,26	3,24	3,33	3,69
IA	I-Teq sans LQ	4,36	0,24	0,09	0,12	ND	0,18	0,06	0,5
ТВ	I-Teq avec LQ			4,86	4,84	5,29	3,21	3,33	4,76
ID	I-Teq sans LQ	8,19	0,11	0,16	0,19	ND	0,11	0,06	2,07
M1	I-Teq avec LQ			4,86		5,99	3,21	3,33	3,41
IVI I	I-Teq sans LQ	2,42	0,74	0,15		ND	0,11	0,03	0,17
M2	I-Teq avec LQ			4,97		5,09	3,39	3,41	3,47
IVIZ	I-Teq sans LQ	3,80	1,94	0,25		ND	0,34	0,14	0,28
M3	I-Teq avec LQ			4,86	4,92	5,43	3,13	3,36	3,36
IVIO	I-Teq sans LQ	1,60	1,88	0,15	0,47		0,03	0,08	0,08
M'1	I-Teq avec LQ				5,29				
IVI I	I-Teq sans LQ	1,83	3,62		1,26				
M'2	I-Teq avec LQ				5,02				
IVI Z	I-Teq sans LQ	1,03	0,37		0,57				
M'3	I-Teq avec LQ			4,81	4,89	5,51	3,16	25,2	3,36
IVI O	I-Teq sans LQ	3,24	2,21	0,11	0,41	ND	0,21	23,6	0,11

Valeur milieu rural de 5 à 20 milieu urbain de 10-85 à proximité d'une source 1000

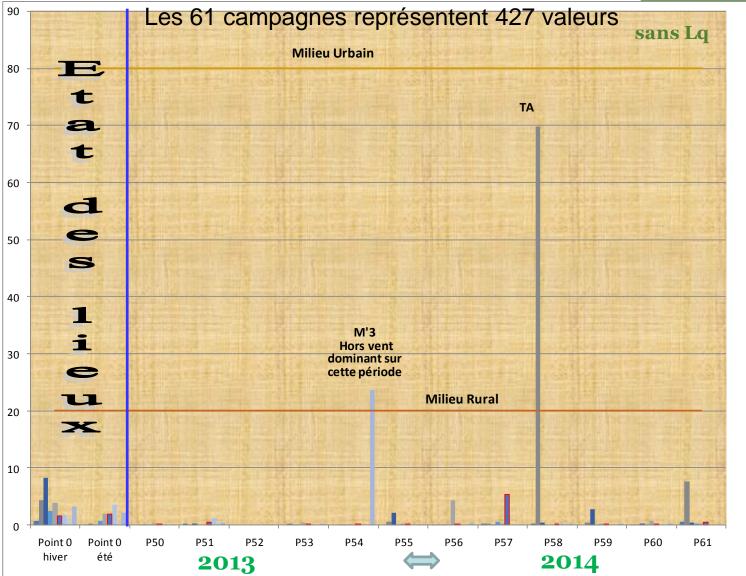
Dioxines

2014

								\	
Si	Sivert		Point 0 été	P56 6 Janvier 2014 au 07 mars 2014	P57 07 mars 2014 au 07 mai 2014	P58 07 mai 2014 au 07 juillet 2014	P59 07 juillet 2014 au 05 septembre 2014	P60 05 septembre 2014 au 07 novembre 2014	P61 07 novembre 2014 au 05 janvier 2015
		en pg I-T	EQ/m².j			en pg I-TEQ/m2	² .j		
Diana da aita	I-Teq avec LQ			3,56	3,47	3,56	3,47	3,41	4,09
Blanc de site	I-Teq sans LQ	0,73	0,09	0,15	0,23	0,2	nd	0,17	0,63
тл	I-Teq avec LQ			3,5	3,53	69,37	3,79	3,41	10,46
TA	I-Teq sans LQ	4,36	0,24	0,06	0,32	69,78	0,41	0,17	7,62
ТВ	I-Teq avec LQ			3,53	3,44	3,82	5,7	3,47	3,83
ID	I-Teq sans LQ	8,19	0,11	0,12	0,06	0,46	2,76	0,22	0,36
M1	I-Teq avec LQ			3,56	3,87		3,56	3,41	3,74
IVI I	I-Teq sans LQ	2,42	0,74	0,15	0,52		0,12	0,17	0,27
M2	I-Teq avec LQ			6,2	3,67		3,64	3,97	3,74
IVIZ	I-Teq sans LQ	3,80	1,94	4,26	0,29		0,21	0,76	0,27
M3	I-Teq avec LQ			3,47	7,17	3,56	3,56	3,36	3,94
IVIO	I-Teq sans LQ	1,60	1,88	0,03	5,41	0,2	0,15	0,08	0,48
M'1	I-Teq avec LQ					3,56			
IVI I	I-Teq sans LQ	1,83	3,62			0,2			
M'2	I-Teq avec LQ					3,47			
IVIZ	I-Teq sans LQ	1,03	0,37			0,2			
M'3	I-Teq avec LQ			3,79	3,5	3,5	3,59	3,44	3,56
IVI O	I-Teq sans LQ	3,24	2,21	0,38	0,12	0,2	0,18	0,2	0,09


Valeur milieu rural de 5 à 20 milieu urbain de 10-85 à proximité d'une source 1000

Dioxines



Protocole « INERIS » - Cônes OWEN - sans Lq

Campagne du 14 Décembre 2012 au 05 Janvier 2015

VEOLIA PROPRETÉ

Blanc de site

■ TA

■ TB

M1 M2

M3

M'1

■ M'2

M'3

Protocole « INERIS » - Cônes OWEN - avec Lq

Campagne du 14 Décembre 2012 au 05 Janvier 2015

Définition avec Limite de Quantification et sans Limite de Quantification (LQ)

Appareil de mesure dispose d'une limite de détection (3x bdf) et d'une limite de quantification (10xbdf), normes EN 1948 -2 et 3.

Avec LQ:

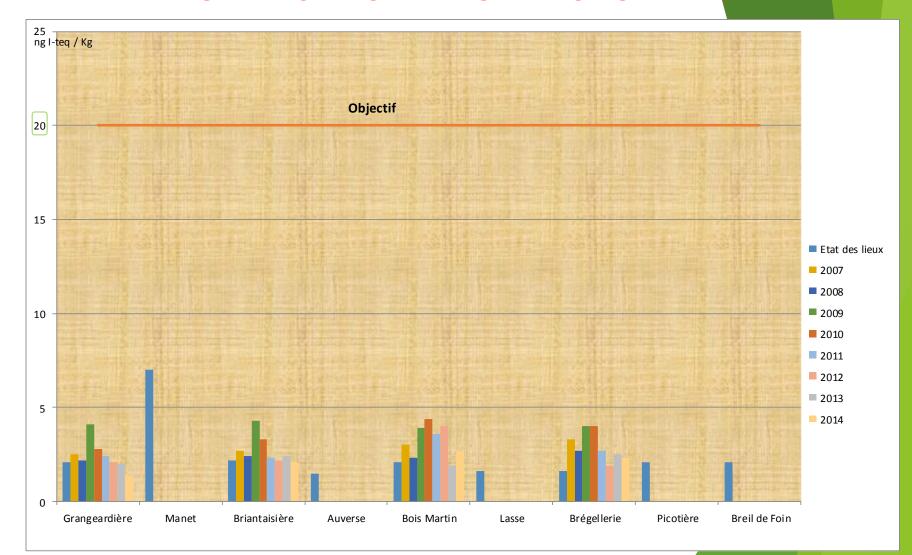
On somme les limites de quantification quand l'appareil n'est pas en capacité de mesurer une valeur. La valeur réelle se situe entre 0 et cette valeur maximale.

Sans LQ:

On ne somme que les valeurs réellement mesurées. Lorsque la mesure est inférieure au seuil de quantification on considère la mesure non quantifiable.

BIO INDICATION – DIOXINES FURANES ET METAUX LOURDS Aair Lichens

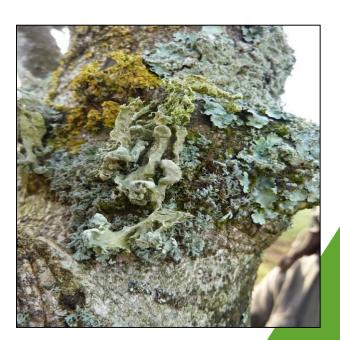
	état	des lie	ux		Phase	de s	uivi		Phase	de s	de suivi		
Sivert	ét	novem	nbre-	13		septembre-14							
	PCDD/PCDF	Métaux lourds			PCDD/PCDF	Mé	taux lo	urds	PCDD/PCDF	Métaux lourds		ourds	
		Pb	Cd	Hg	OMS 2005	Pb	Cd	Hg	OMS 2005	Pb	Cd	Hg	
	en ng I-TEQ/kg	E			en ng I-TEQ/kg	Θ	en mg/	kg	en ng I-TEQ/kg		en mg	/kg	
Grangeardière	2,1	7,8	0,2	0,2	2	9	0,28	0,07	1,4	10	0,2	<l.q< td=""></l.q<>	
Manet	7	21	0,2	0,2									
Briantaisière	2,2	14	1	0,1	2,4	7	0,21	0,08	2,1	6	0,15	0,06	
Auverse	1,5	5,7	0,1	0,1									
Bois Martin	2,1	19	0,3	0,2	1,9	6,2	0,15	0,11	2,7	3	<l.q< td=""><td><l.q< td=""></l.q<></td></l.q<>	<l.q< td=""></l.q<>	
Lasse	1,6	2,2	<0,1	0,1									
Brégellerie	1,6	1,1	<0,1	<0,1	2,5	1,6	0,12	0,08	2,3	2	0,15	0,07	
Picotière	2,1	17	0,2	0,2									


Objectif	<20 ng I-TEQ/Kg
Pas de restriction à l'usage agricole	compris entre 20 et 160 ng I-TEQ/kg
Restriction à l'usage agricole	>160 ng I-TEQ/kg

BIO INDICATION – DIOXINES FURANES



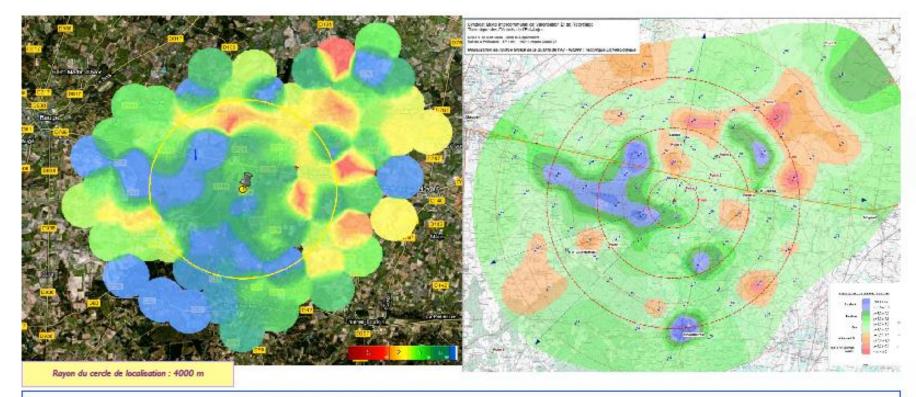
BIO INDICATION – DIOXINES FURANES


BIO INDICATION – IGQA

Indice global de la qualité de l'air

Cartographie réalisée en 2003 (état des lieux)

10 points suivis tous les ans


Nouvelle carte réalisée en 2011

SIVERT Est-Anjou - Lasse (49) - 2011

Résultats du calcul de l'Indice Global de la Qualité de l'Air (IGQA®) - Fond satellitaire

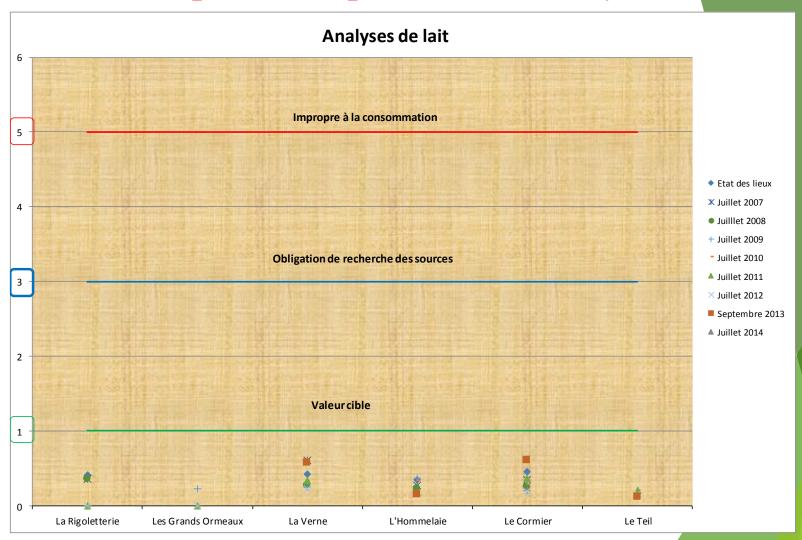
Mise en parallèle avec l'étude initiale de 2003 (à droite)

ANALYSE DU LAIT Exploitations proches du site (rayon de 7 km)

Sivert	Etat des lieux		Juillet 2010	Juillet 2011	Juillet 2012	Juillet 2012	Septembre 2013	Juillet 2014
	en pg I-TEQ/g de matière grasse							
	OMS 1998	OMS 2005			OMS 1998		OMS 2005	
La Rigoletterie	0,41	0,35	*	*	*	*		
Les Grands Ormeaux			**	**	**	**		
La Verne	0,42	0,37	0,32	0,33	0,24	0,22	0,57	0,15
L'Hommelaie	0,34	0,30	0,33	0,17	0,18	0,16	0,15	0,12
Le Cormier	0,45	0,39	0,28	0,37	0,22	0,19	0,60	0,18
Le Teil			0,20	0,20	0,18	0,16	0,12	0,14

Arrêt de l'exploitation, remplacée par l'exploitation des grands ormeaux Création d'une GAEC avec une autre exploitation, le troupeau a été déplacée. L'exploitation du Teil a été choisie car elle se trouve également sur l'axe M' des retombées atmosphériques et a proximité de l'UVE

Valeur cible	1
Obligation de recherche des sources	3
Impropre à la consommation	>5



pg I-Teq/g matière grasse

ANALYSE DU LAIT Exploitations proches du site (rayon de 7 km)

Plans de suivi – Conclusions (1/2)

- · Valeurs DIOXINES Prélèvements en continu à la cheminée AMESA-
 - → Moyenne des valeurs annuelles d'émission en 2013 e<mark>t 2014 plus</mark> de 30 à 50 fois inférieure à la norme européenne
- Bio Indication Lichens
 - →" Les données sont stables de 2013 à 2014 et démontrent l'absence de retombée mesurable.

Plans de suivi – Conclusions (2/2)

- · Protocole INERIS DIOXINES- Cônes OWEN-
 - → " Pour les PCDD-PCDF, les dépôts mesurés sont comparables à un niveau de zone rural –[FIEDLER]. "
- Protocole INERIS METAUX LOURDS- Cônes OWEN-
 - → " Les teneurs sont comparables à un environnement de type bruit de fond rural "
- •Analyse de DIOXINES dans le lait exploitations -
 - → Niveau de concentration faible
 - → Pas d'évolution significative

